首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79655篇
  免费   10287篇
  国内免费   6176篇
电工技术   9933篇
技术理论   1篇
综合类   7285篇
化学工业   15376篇
金属工艺   5741篇
机械仪表   3146篇
建筑科学   5684篇
矿业工程   2723篇
能源动力   2919篇
轻工业   7123篇
水利工程   2665篇
石油天然气   3445篇
武器工业   741篇
无线电   8237篇
一般工业技术   9018篇
冶金工业   3126篇
原子能技术   677篇
自动化技术   8278篇
  2024年   185篇
  2023年   1569篇
  2022年   2145篇
  2021年   2796篇
  2020年   3044篇
  2019年   2939篇
  2018年   2686篇
  2017年   3043篇
  2016年   3197篇
  2015年   3276篇
  2014年   4541篇
  2013年   5005篇
  2012年   5502篇
  2011年   5734篇
  2010年   4151篇
  2009年   4714篇
  2008年   4307篇
  2007年   5193篇
  2006年   4748篇
  2005年   4007篇
  2004年   3396篇
  2003年   3032篇
  2002年   2527篇
  2001年   2229篇
  2000年   1933篇
  1999年   1652篇
  1998年   1385篇
  1997年   1205篇
  1996年   1038篇
  1995年   957篇
  1994年   834篇
  1993年   618篇
  1992年   596篇
  1991年   426篇
  1990年   336篇
  1989年   309篇
  1988年   168篇
  1987年   116篇
  1986年   92篇
  1985年   69篇
  1984年   91篇
  1983年   64篇
  1982年   67篇
  1981年   37篇
  1980年   42篇
  1979年   24篇
  1978年   17篇
  1977年   13篇
  1975年   8篇
  1951年   22篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
91.
Recently, thermosensitive chitosan systems have attracted the interest of many researchers due to their growing application potential. Nevertheless, the mechanism of the sol-gel phase transition is still being discussed, and the glycerophosphate salt role is ambiguous. The aim of the work is to analyze the possibility of the exclusive use of a non-sodium glycerophosphate salt and to determine its impact on the gelation conditions determined by rheological and turbidimetric measurements as well as the stability of the systems by measuring changes in the Zeta potential value. It was found that ensuring the same proportions of glycerophosphate ions differing in cation to amino groups present in chitosan chains, leads to obtaining systems significantly different in viscoelastic properties and phase transition conditions. It was clearly shown that the systems with the calcium glycerophosphate, the insoluble form of which may constitute additional aggregation nuclei, undergo the gelation the fastest. The use of magnesium glycerophosphate salt delays the gelation due to the heat-induced dissolution of the salt. Thus, it was unequivocally demonstrated that the formulation of the gelation mechanism of thermosensitive chitosan systems based solely on the concentration of glycerophosphate without discussing its type is incorrect.  相似文献   
92.
The phase shift characteristics reflect the state change of electromagnetic wave in plasma sheath and can be used to reveal deeply the action mechanism between electromagnetic wave and plasma sheath. In this paper, the phase shift characteristics of electromagnetic wave propagation in plasma were investigated. Firstly, the impact factors of phase shift including electron density,collision frequency and incident frequency were discussed. Then, the plasma with different electron density distribution profiles were employed to investigate the influence on the phase shift characteristics. In a real case, the plasma sheath around the hypersonic vehicle will affect and even break down the communication. Based on the hypersonic vehicle model, we studied the electromagnetic wave phase shift under different flight altitude, speed, and attack angle. The results indicate that the phase shift is inversely proportional to the flight altitude and positively proportional to the flight speed and attack angle. Our work provides a theoretical guidance for the further research of phase shift characteristics and parameters inversion in plasma.  相似文献   
93.
Chemical stability of phosphors is critical to the efficiency and lifetime of the white light-emitting diodes. Therefore, many strategies have been adopted to improve the stability of phosphors. However, it is still lack of report on the improvement of thermal stability and hydrolysis resistance of phosphors by a single layer coating. Due to the high transmittance and high chemical inertness of graphene, it was coated on the surface of Sr2Si5N8:Eu2+ phosphor by chemical vapor deposition, aiming to improve its thermal stability and hydrolysis resistance. The chemical composition and microstructure of the coating were characterized and analyzed. A nanoscale carbon layer was attached on the surface of Sr2Si5N8:Eu2+ phosphor particles in an amorphous state. In coated Sr2Si5N8:Eu2+ phosphor, the oxidation degree of Eu2+ to Eu3+ was significantly suppressed. At the same time, the surface of Sr2Si5N8:Eu2+ particle turned from hydrophilic to hydrophobic after carbon coating, and consequently the hydrolysis resistance of Sr2Si5N8:Eu2+ phosphor was greatly improved. After tests at 85 °C and 85% humidity for 200 h, the carbon coated Sr2Si5N8:Eu2+ phosphor still maintained about 95% of its initial luminous intensity as compared with 35% of the uncoated. By observing the in-situ microstructure evolution of coated phosphor in air-water vapor environment, remained presence of the carbon layer even at 500 °C explained the excellent chemical stability of carbon coated Sr2Si5N8:Eu2+ phosphor in complex environment. These results indicate that a nanoscale carbon layer can be used to provide superior thermal stability and hydrolysis resistance of (oxy) nitrides phosphors.  相似文献   
94.
Higher manganese silicides (HMS) are promising alternative materials for middle to high temperature thermoelectric applications as a low-cost, non-toxic and highly stable p-type leg. Many of the preparation methods that have been reported previously require long-time and energy consuming processes, as well as expensive equipment, and often do not result in a material of sufficient quality. In this study, the simple, cost-effective and eco-friendly technique of pack cementation is applied. HMS powders synthesized at different experimental conditions are studied and compared considering their structure, composition, short-term thermal stability in air and thermoelectric properties. X-ray diffraction analysis, X-ray photoelectron spectroscopy, scanning electron microscopy, thermogravimetry and thermoelectric measurements (in terms of Seebeck coefficient, electrical and thermal conductivity) were employed for the characterization of the material and evaluation of its performance. All samples were identified as HMS and only some negligible traces of MnSi were detected. They moderately oxidize when heated non-isothermally under air atmosphere up to 1473 K, while the presence of HMS remains dominant even at such high temperatures. Their thermoelectric properties were remarkable for an undoped material, with a maximum figure of merit (ZT) of 0.47 at 777 K. Pack cementation appeared to have a great potential as the synthesis route of high-efficiency HMS.  相似文献   
95.
Rare-earth ions doped Ca0.9R0.1CeNbMoO8 (R = Y, Sm, Nd, La) ceramics have been successfully prepared by solid-state method, and their modifications to the microstructure and electrical properties are also investigated. The rare-earth ions doped ceramics exhibit the scheelite structure. With the increase in the radius of rare-earth ions, the lattice distortion and bond interaction will be enhanced, and the consistency of grain size will be reduced. The ceramics exhibit negative temperature coefficient (NTC) thermistor characteristics in the temperature range of 473 K-1273 K, and the activation energy decreases with the increase of the radius of rare-earth ions. Rare-earth ions doping can increase the content of Ce3+ ions and promote the conductivity of ceramics. Except for Sm3+-doped ceramics, the high-temperature aging rate of other ceramics is less than 2%. The existence of some metastable Sm2+ ions in Sm3+-doped ceramics not only increases the activation energy, but also reduces the high-temperature stability of the ceramics.  相似文献   
96.
传统通信模拟系统设计较为复杂,导致模拟过程消耗能量较大,不能准确模拟稳频通信质量。因此,提出基于Matlab的量子激光雷达稳频通信模拟系统。由于振荡器是雷达形成初始信号源的基础,通过分析振荡电路与相位噪声,获得相位噪声函数与通信频率存在的关系;为确保通信过程的稳定,将准确性与稳定性作为信号质量的评价指标,并采用锁频环稳频技术计算频率偏移程度,根据PID控制算法控制频率,量子激光雷达稳频通信;利用Matlab确定激光器、探测器等硬件组成结构,通过时序与数字阵列的设置完成模拟系统设计。仿真结果表明所提系统结构简便、性能稳定,能够真实模拟出稳频通信的信号质量。  相似文献   
97.
以正辛基三乙氧基硅烷和3-巯基丙基三乙氧基硅烷为改性剂,以双氧水为氧化剂,在水基环境下对亲水纳米SiO2颗粒表面进行改性,得到具有磺酸基和辛基的双亲纳米SiO2颗粒,并通过红外和热重对其化学结构和热稳定性进行分析。将双亲纳米SiO2颗粒分散在地层水中制备纳米流体,并评价纳米流体的稳定性、界面性质和渗吸效率。利用核磁共振技术探究纳米流体渗吸过程中岩心孔隙内原油运移规律。结果表明,纳米流体储存30 d未出现分层现象,表现出良好的稳定性;经纳米流体处理的岩心亲水性增强。此外,双亲纳米SiO2颗粒将油水界面张力降低至1.7 mN/m;纳米流体渗吸采收率高达22.6%,渗吸初始阶段小孔隙中的原油被动用,而在渗吸后期阶段大孔隙中的原油才被动用。  相似文献   
98.
A double pyrovanadate CaMgV2O7 sample was synthesized via a facile solid-state route under an air atmosphere. The nonequilibrium formation pathways of the CaMgV2O7 were investigated via powder X-ray diffraction. A multistep reactions path (metavanadates–pyrovanadates–double pyrovanadate CaMgV2O7) was proposed to describe the formation of the CaMgV2O7 considering the thermodynamic and kinetic factors. The cell unit parameters of the CaMgV2O7 sample indicated the crystallization according to a monoclinic system with space group P12/c1(14), and the lattice parameters of a = 6.756 Å, b = 14.495 Å, c = 11.253 Å, β = 99.12, and V = 108.806 Å3. X-ray photoelectron spectroscopy also confirmed the +5 oxidation state vanadium in CaMgV2O7. The endothermic effects at 1033 and 1143 K were related to the incongruent melting and liquidus temperatures of CaMgV2O7, respectively. The comprehensive thermodynamic properties of CaMgV2O7 were established in both low- and high-temperature regions, utilizing a physical property measurement system and multi-high-temperature calorimetry (96 lines). The heat capacity (200 J mol K−1) and entropy (198 J mol K−1) at 298.15 K were computed based on the low-temperature heat capacity values, and the enthalpy of formation at 298.15 K was also estimated. The fitted high-temperature capacity can be used to obtain the changes in the enthalpy, entropy, and Gibbs free energy. This study is part of building a reliable thermodynamic database of the CaO–MgO–V2O5 system.  相似文献   
99.
《Ceramics International》2022,48(11):14987-14992
The ceramic compound CaMoO4 is synthesized via a solid-state reaction technique. Rietveld refinement studies were done on the powder X-ray diffraction data of CaMoO4 and revealed that the compound is crystallized in the tetragonal Scheelite structure with I41/a space group. The differential scanning calorimetry (DSC) studies on CaMoO4 divulged an anomaly around 440 °C. This anomaly is further probed using the temperature-dependent Raman and dielectric spectroscopic measurements and are corroborating with the results obtained from DSC. A detailed investigation on the temperature-dependent Raman spectroscopic data revealed that the A1g mode of CaMoO4 showed a soft phonon behavior up to the phase transition temperature. It is observed that the A1g mode displayed phonon hardening behavior with further increasing the temperature. The anomaly is attributed to an isostructural phase transition (IPT), a rarely observed phenomenon in the compounds with Scheelite structure. The IPT in CaMoO4 is elucidated with a phonon softening mechanism.  相似文献   
100.
Pc-WLEDs are considered to play a spectacular role in future generation light sources in view of their outstanding energy efficiency. In this regard, Eu3+ activated BaY2ZnO5 phosphor was prepared and investigated by XRD, PL and SEM analyses. Rietveld refinement analysis was carried out to confirm the structure of the synthesized phosphor. The prepared phosphor shows an intense red emission around 627 nm under excitation by near UV light. The 5D0-7F2 transition intensity of the prepared phosphor is three times higher compared to the commercial (Y,Gd)BO3:Eu3+ red phosphor. The CIE colour coordinates of BaY2ZnO5:Eu3+ (9mol%) phosphor corresponds to be (0.6169, 0.3742) and it has a high 97.9 % colour purity. The obtained results reveal the utility of BaY2ZnO5:Eu3+ phosphor as an efficient red component in WLEDs, anti-counterfeiting and fingerprint detection applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号